Weighted sum formulas of multiple zeta values with even arguments
نویسندگان
چکیده
منابع مشابه
A Combinatorial Identity of Multiple Zeta Values with Even Arguments
Let ζ(s1, s2, · · · , sk;α) be the multiple Hurwitz zeta function. Given two positive integers k and n with k 6 n, let E(2n, k;α) be the sum of all multiple zeta values with even arguments whose weight is 2n and whose depth is k. In this note we present some generating series for the numbers E(2n, k;α).
متن کاملWeighted Sum Formula for Multiple Zeta Values
Abstract. The sum formula is a basic identity of multiple zeta values that expresses a Riemann zeta value as a homogeneous sum of multiple zeta values of a given dimension. This formula was already known to Euler in the dimension two case, conjectured in the early 1990s for higher dimensions and then proved by Granville and Zagier independently. Recently a weighted form of Euler’s formula was o...
متن کاملShuffle Product Formulas of Multiple Zeta Values
Using the combinatorial description of shuffle product, we prove or reformulate several shuffle product formulas of multiple zeta values, including a general formula of the shuffle product of two multiple zeta values, some restricted shuffle product formulas of the product of two multiple zeta values, and a restricted shuffle product formula of the product of n multiple zeta values.
متن کاملSUM OF MULTIPLE q-ZETA VALUES
The generating function of the sums of multiple q-zeta values with fixed weights, depths and 1-heights, 2-heights, . . . , r-heights is represented in terms of specializations of basic hypergeometric functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2018
ISSN: 0025-5874,1432-1823
DOI: 10.1007/s00209-018-2165-3